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1 Introduction

In this technical report, we study the multiple-sink fixed-charge transportation problem (MS-
FCTP), which arises frequently in application areas of scheduling and cost control, such as
facility planning, capital budgeting, resource allocation, buffer allocation, pollution control,
etc. The MSFCTP problem involves the distribution from a set of supply centers (sources)
to a set of demand centers (destinations) such that the demand at each destination is satis-
fied without exceeding the supply at any source. The objective is to determine a distribution
scheme that has the least cost of transformation.

The MSFCTP is traditionally formulated as a mixed integer programming problem
described as follows [23]:

min TC =
m∑

i=1

n∑

k=1

(cikxik + fikyik)

s.t.
n∑

k=1

xik = Si for 1 ≤ i ≤ m,

m∑

i=1

xik = Dk for 1 ≤ k ≤ n,

0 ≤ xik ≤ mikyik for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

yik ∈ {0, 1} for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

(1.1)

where n is the number of destinations, m is the number of sources, cik is the cost per unit
amount transported from source i to destination k, xik is the amount transported from
source i to destination k, fik ≥ 0 is the fixed-charge incurred if xik 6= 0, Si > 0 is the supply
available at source i, Dk > 0 is the demand at destination k, mik = min{Si, Dk} is the
maximum amount that can be transported from source i to destination k, and yik is 1 if
xik 6= 0 and 0 otherwise. We assume that

∑
i Si =

∑
k Dk.
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The fixed-charge problem (FCP) was first formulated by Hirsch and Dantzig in 1954
[17]. In 1961, Balinski showed that the fixed-charge transportation problem (FCTP) is a
special case of the FCP and presented an approximation solution [5]. Initial approximation
solutions to the problem were mainly heuristic [5, 9, 24, 26, 28]. In 1968, Murty developed
the first exact solution to the FCTP [22]. As he pointed out, the method is most useful
when the fixed charges are quite small compared to the transportation cost. Other exact
approaches specialized to the problem include [11, 13, 14, 26, 27]. Kennington and Unger
proposed a branch-and-bound procedure for the FCTP [18]. The bounds have been im-
proved by Barr et al. [6], Cabot and Erenguc [8], Schaffer and O’Leary [25], Palekar et al.
[23], Haberl et al. [15], etc. Due to their application potential and computational challenge,
these problems continue to be the focus of considerable research [1, 2, 3, 7, 10, 12]. Note that
when n = 1, the above interested problem becomes a single-sink fixed-charge transportation
problem (SSFCTP) [4, 16, 19, 20, 21].

Recently we have developed a preferable intervals solution approach for SSFCTPs [20,
21]. Several heuristic algorithms based on preferable intervals of polynomial time complex-
ity are provided. We have compared our heuristics with CPLEX, which is a benchmark
commercial software widely used in both academic and industrial communities. The com-
putation shows that our method is fast and efficient, which works very well for problems
of both large and small scales. Encouraged by the previous results, we will extend the
preferable interval method for the MSFCTP.

The rest of this report is organized as follows. We start with definition and properties of
preferable intervals in Section 2. Section 3 is devoted to properties of the optimal solutions
to the MSFCTP. In Section 4, heuristic algorithms are presented followed by computational
experience and our summary in Sections 5 and 6, respectively.

2 Preferable Intervals

Standard interval notations are used in this paper. In particular, [a, a] = {a} and (a, a] = ∅
for all real number a. If a > b, then [a, b] = ∅ and (a, b] = ∅. Here ∅ stands for the empty
set.

There are three different ways to assign work load of a destination to two sources. One
may choose only one of the two sources, or both sources. We want to determine when the
employment of only one source will yield the least cost among the three cases. Motivated
by this purpose, we define the preferable interval of one source against another source for a
certain destination as the following.

Definition 2.1 For destination k, the preferable interval of source i against source j is
defined as

kI
i
j =

{
kA

i
j ∪ kB

i
j if sources i and j are distinct

[0, mik] if sources i and j are identical
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where

kA
i
j = {x ∈ [0,mik] : fik + cikx < fjk + cjkx},

kB
i
j = (mjk,mik · sgn(fjk + (cjk − cik)mjk)]

=

{
(mjk,mik] if mjk < mik and fjk + (cjk − cik)mjk > 0,

∅ otherwise,

and sgn(x) is the signum function of x.

It is clear that kI
i
j ⊆ [0,mik] for any 1 ≤ i, j ≤ M . Next, we discuss the implications of

the preferable interval kI
i
j for different sources i and j. We have the following property of

preferable intervals.

Proposition 2.2 Consider different sources i and j for destination k. If the demand mag-
nitude x ≤ mik, then sole source i is preferred to source j or any combination of both sources
i and j in terms of cost if and only if x ∈ kI

i
j.

Proof. Assume that x ∈ kA
i
j 6= ∅. By the definition of kA

i
j , it is clear that

fik + cikx < fjk + cjkx. (2.1)

Moreover, it can be proved that

fik + cikx < fjk + cjkξ + fik + cik(x− ξ) (2.2)

or, equivalently,
0 < fjk + (cjk − cik)ξ (2.3)

for 0 < ξ < x. In order to show (2.3), consider the following two cases. If cik < cjk, since
fik ≥ 0, then (2.3) is trivially true. If cjk ≤ cik, then (2.1) and ξ < x imply

0 < fik < fjk + (cjk − cik)x ≤ fjk + (cjk − cik)ξ

which is exactly (2.3). Hence (2.3) is always true when 0 < ξ < x, and so is (2.2). Inequality
(2.1) indicates that source i yields less cost than source j. Inequality (2.2) implies that using
source i leads less cost than using both sources. Therefore, when x ∈k Ai

j , an employment
of solely source i will yield the least cost among all possible assignments indicated above.

Secondly, suppose that x ∈ kB
i
j 6= ∅. This implies that mjk < mik and

0 < fjk + (cjk − cik)mjk. (2.4)

Since mjk < x, the shipment cannot be made by source j itself. So we need only compare
the cost by sole source i and the cost by both sources i and j; i.e. we need to ensure (2.2) for
0 < ξ ≤ mjk. By similar arguments as the proof of (2.3), one can conclude that condition
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(2.4) will make (2.2) valid. Therefore, when x ∈ kB
i
j , using only source i will again yield

the least costly solution among the other possible assignments to both sources.
On the other hand, when mjk < x, in order to guarantee that the employment of sole

source i yields the least cost, we need to check the following two cases. Case (i) If x ≤ mjk,
then (2.1) must hold, and (2.2) must hold for 0 < ξ < x. Notice that (2.1) implies (2.2)
in this situation, which leads to the fact that x ∈k Ai

j and hence x ∈ kI
i
j . Case (ii) If

x > mjk, then only (2.2) needs to be valid for 0 < ξ ≤ mjk. If cik < cjk, then (2.2) is
clearly true for any 0 < ξ ≤ mjk; in particular, it holds when ξ = mjk, which is actually
(2.4). If cjk ≤ cik, then (2.2) holds for any 0 < ξ ≤ mjk if and only if (2.4) is satisfied.
Both situations give x ∈ kB

i
j and thus x ∈ kI

i
j . Therefore, one may conclude from the two

cases that x must belong to kI
i
j to ensure the least cost by using only source i among all

assignments to sources i and j. ¤

3 Properties of the Optimal Solutions

The MSFCTP is an NP-hard problem. In this section, we present properties of optimal
solutions. The properties will be used in the development of the algorithms in Section 4.

Proposition 3.1 There exists an optimal solution to the MSFCTP (1.1) such that, either
for every destination k or for every source i, there is at most one source such that 0 < xik <

mik. That is, for the entire optimal solution double array xik, either at most one entry in
each row is not fully loaded, or at most one entry in each column is not fully loaded.

Proof. Suppose that, in an optimal solution, there are entries in row k with 0 < xik < mik

and 0 < xjk < mjk and entries in another row l with xil < mil, xjl < mjl, and one of xil

and xjl is greater than 0. This is the only case contradicts the statement.
We next modify the solution double array such that the statement of the proposition is

satisfied and the total cost is not increased. In particular, for destination k, we can pass a

units from source j to source i. (Here a could be negative, in which case units are passed
from source j to source i.) To fulfill the subject constraints of (1.1), the two corresponding
entries in row l should be adjusted. The new assignments of the four entries are thus xik +a,
xjk − a, xil − a, and xjl + a. The change in total cost will be at least

a(cik − cjk − cil + cjl).

We will pick a positive if cik−cjk−cil +cjl ≥ 0 and pick a negative if cik−cjk−cil +cjl < 0.
The total cost will thus not be increased. Moreover, a can be properly chosen such that
one of four entries is fully loaded (i.e., e.g., xik = mik), and another entry in either its same
row or column is 0. Therefore, at most one of the four entries are partially loaded, and a
reduction of fik, fjk, fil, or fjl will occur in the total cost.

Doing the same procedure for all groups of entries that violate the statement of the
proposition. The new solution will have same or smaller total cost. The proposition thus
follows. ¤
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Remark 3.1 The two cases of Proposition 3.1 sometimes cannot both hold. For example,
when Si > Dk for all 1 ≤ i ≤ m and 1 ≤ k ≤ n, it could be impossible to find a solution
such that at most one entry in every row is partially loaded. But an optimal solution exists
with at most one entry in every column is partially loaded in this case. Note that these two
cases, in the sense of double array, are the same. Therefore, we may from now on assume
that there exists an optimal solution to the MSFCTP (1.1), in which, for every destination
k, there is at most one source i such that 0 < xik < mik. The other case can be studied in
a similarly way.

If xik 6= 0, then the average cost per unit amount transported from source i to destination
k is eik = cik + fik/xik. It is easy to see that when the amount transported increases, the
average cost per unit will decrease. In particular, the least possible average cost would be
εik = cik + fik/mik. Clearly, 0 < eik ≤ εik. Therefore, in principle, an optimal solution
would include least possible partially loaded sources.

Proposition 3.2 Consider an optimal solution to the MSFCTP (1.1). Assume that for
every destination k, there is at most one source i such that 0 < xik < mik. Then xik+mjk /∈
kI

i
j for all j with xjk = mjk.

Proof. If xik+mjk ∈ kI
i
j for some j with xjk = mjk, then xik+mjk ≤ mik. The total cost

can be reduced by reassigning all units of source j to source i, according to Proposition 2.2.
But this contradicts the assumption of optimal solution. ¤

Remark 3.2 Proposition 3.2 gives a necessary condition of an optimal solution for employing
a source. That is, a fully loaded source needs to satisfy Proposition 3.2.

4 Solution Heuristics

In this section, we present several heuristic approaches. The schemes are developed based
on properties studied in Section 3. Here it is assumed that for every destination k, there is
at most one source i such that 0 < xik < mik.

Algorithm 4.1 (Greedy Heuristic)

Step 1 Calculate εik for all entries, save the results in double array E.

Step 2 Find the smallest entry in E and fully load the corresponding entry in the double
array of xik. Update E by deleting the row and column of the entry. Repeat Step 2
till E has no entry.

Step 3 Using the constraints
∑

k xik = Si and
∑

i xik = Dk to identify the sources and
destinations that have not been exhausted. If there is no such source and destination,
then stop. Otherwise, put the corresponding εik together, save the double array as E,
and go to Step 2.

5



Algorithm 4.2

Step 1 Find the result of Algorithm 4.1.

Step 2 For each column, find the entry such that 0 < xik < mik. If there is an entry xjk

does not satisfy Proposition 3.2, then passing units from source j to i. Adjust the
other columns according to the constraints

∑
k xik = Si and

∑
i xik = Dk.

Step 3 If the total cost is not reduced, then stop. Otherwise, go to Step 2.

5 Computational Experiences

Example 5.1 Consider the MSFCTP given by the following data [5]:

C =




2 3 4
3 2 1
1 4 3
4 5 2


 , F =




10 30 20
10 30 20
10 30 20
10 30 20


 ,

D = (20 50 30), S = (10 30 40 20),

where the entries of C, F , D, and S are cik, fik, Dk, and Si, respectively. The double arrays
for mik and εik are

M =




10 10 10
20 30 30
20 40 30
20 20 20


 , E =




3 6 6
3.5 3 1.67
1.5 4.75 3.67
4.5 6.5 3


 .

By Algorithm 4.1, the solution is

X =




0 10 0
0 0 30

20 20 0
0 20 0


 ,

which has total cost TC = 380. Note that the entries x32 and x42 do not satisfy the
Proposition 3.2. We need to adjust the solution. Then by Algorithm 4.2, the solution is

X =




0 10 0
0 30 0

20 10 10
0 0 20


 .

The total cost is TC = 360, which is the same as the cost in [5].
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Example 5.2 Consider the MSFCTP given by the following data [5]:

C =




.69 .64 .71 .79 1.70 2.83 2.02 5.64 5.94 5.94 5.94 7.6
1.01 .75 .88 .59 1.5 2.63 2.26 5.64 5.85 5.62 5.85 4.54
1.05 1.06 1.08 .64 1.22 2.37 1.66 5.64 5.91 5.62 5.91 4.54
1.94 1.50 1.56 1.22 1.98 1.98 1.36 6.99 6.99 6.99 6.99 3.68
1.61 1.40 1.61 1.33 1.68 2.83 1.54 4.26 4.26 4.26 4.26 2.99
5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.31 0.21 0.17 0.31 1.53
5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.55 0.35 0.40 0.19 1.53
5.29 6.08 6.08 5.29 5.96 6.45 5.08 2.43 2.30 2.33 1.81 2.50




,

F =




11 16 18 17 10 20 17 13 15 12 14 14
14 17 17 13 15 13 16 11 20 11 15 10
12 13 20 17 13 15 16 13 12 13 10 18
16 19 16 11 15 12 18 12 18 13 13 14
19 18 15 16 12 14 20 19 11 17 16 18
13 20 20 17 15 12 14 11 12 19 15 16
11 12 15 10 17 11 11 16 10 18 17 12
17 10 20 12 17 20 16 15 10 12 16 18




,

D = (20 15 20 15 5 20 30 10 35 25 10 5), S = (15 20 45 35 25 35 10 25),

where the entries of C, F , D, and S are cik, fik, Dk, and Si, respectively. The double arrays
for mik and εik are

M =




15 15 15 15 5 15 15 10 15 15 10 5
20 15 20 15 5 20 20 10 20 20 10 5
20 15 20 15 5 20 30 10 35 25 10 5
20 15 20 15 5 20 30 10 35 25 10 5
20 15 20 15 5 20 25 10 25 25 10 5
20 15 20 15 5 20 30 10 35 25 10 5
10 10 10 10 5 10 10 10 10 10 10 5
20 15 20 15 5 20 25 10 25 25 10 5




,

E =




1.42 1.71 1.91 1.92 3.70 4.16 3.15 6.94 6.94 6.74 7.34 10.40
1.71 1.88 1.73 1.46 4.50 3.28 3.06 6.74 6.85 6.17 7.35 6.54
1.65 1.93 2.08 1.77 3.82 3.12 2.19 6.94 6.25 6.14 6.91 8.14
2.74 2.77 2.36 1.95 4.98 2.58 1.96 8.19 7.50 7.51 8.29 6.48
2.56 2.60 2.36 2.40 4.08 3.53 2.34 6.16 4.70 4.94 5.86 6.59
5.94 7.27 7.08 6.42 8.96 7.37 5.55 1.41 0.55 0.93 1.81 4.73
6.39 7.14 7.58 6.29 9.36 7.87 6.18 2.15 1.35 2.20 1.89 3.93
6.14 6.75 7.08 6.09 9.36 7.45 5.72 3.93 2.70 2.81 3.41 6.10




.
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By Algorithm 4.2, we finally get the solution

X =




15 0 0 0 0 0 0 0 0 0 0 0
0 0 0 15 0 0 0 5 0 0 0 0
5 15 0 0 5 20 0 0 0 0 0 0
0 0 0 0 0 0 30 0 0 0 0 5
0 0 20 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 0 35 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 25 0 0




.

The total cost is TC = 497.25, which is better than the cost 497.55 in [5].

6 Summary and Conclusions

In this paper, we extended the concept of preferable intervals to the MSFCTP. The effec-
tiveness of this approach was illustrated by two computational examples. The procedure is
innovative and powerful. It is our belief that the techniques could be improved and utilized
for branch-and-bound method, which is an on-going project.
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