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ABSTRACT 
 

The single-sink fixed-charge transportation problem is an important problem with 
applications in many areas. In this paper, a new concept of preferable interval is introduced. 
Properties of optimal solutions to the single-sink fixed-charge transportation problem are 
investigated. Solution approaches using preferable intervals are presented.  
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I. INTRODUCTION 
  

The single-sink fixed-charge transportation (SSFCT) problem is arisen frequently in 
application areas of scheduling and cost control, such as facility planning, capital budgeting, 
resource allocation, buffer allocation, pollution control, etc. A number of applications of the 
SSFCT problem are discussed in Haberl et al. (1991) and Herer et al. (1996). 
 

The SSFCT problem is to determine the amount of shipments to be made from a 
given set of suppliers to a single sink, such that the total demand is satisfied in a minimum 
cost fashion. A fixed charge and cost proportional to the quantity shipped occur when a 
supplier is employed. The SSFCT problem can be mathematically formulated in terms of an 
integer programming problem as shown below. See Herer et al. (1996). 
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where, for  ,1 Mi ≤≤

ib : the capacity of supplier i  ( ∈ib N) 
D:  the demand magnitude ( ∈D N) 
M:  the number of suppliers ( ∈M N) 

iF : the fixed management cost incurred when using supplier i  ( ) 0≥iF
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Figure 1. Graphical Depiction of the SSFCT Problem 

 
if : the effective unit variable cost of supplier  ( ) i 0≥if
iy : an integer variable taking the value of 1 when supplier i  is used, and 0 otherwise 

The solution to the problem is a vector d = ( )Mddd ,,, 21 L  (also called the transportation 
profile) for which  is the amount allocated to supplier i . Here  are nonnegative integers, 

. The optimal solution to the SSFCT problem is clearly not unique. The problem 
can be represented graphically as in Figure 1, as given in Herer et al. (1996). 

id id
Mi ≤≤1

 
 The fixed-charge problem was considered as far back as Hirsch and Dantzig (1954). 
Balinski (1961) showed the fixed-charge transportation problem to be a special case of the 
fixed-charge problem and presented a heuristic solution. The SSFCT problem contains only 
one sink which is characterized by the demand. It has been the subject of several papers in 
recent years. Haberl (1991) proposed an implicit complete enumeration algorithm of 
complexity O(2M). Herer et al. (1996) improved the enumeration scheme of Haberl by 
employing domination rules and further improving lower bounds. Their procedure has 
complexity order O(M 2M). Recently Alidaee and Kochenberger (2005) presented a dynamic 
programming method, which can solve the problem in O(MD) time. 
 
 In this paper, a novel approach to the SSFCT problem is posed to find the optimal 
solutions. The concept of preferable intervals is introduced and studied. Necessary 
conditions of selecting suppliers are obtained in terms of preferable intervals. Several 
heuristic algorithms of polynomial time complexity are provided. Our further research is 
based on the heuristics. Enumerating algorithms using preferable intervals will be developed 
by adding lower bounds. 
 
 The report is organized as follows. We start with definition and properties of 
preferable intervals in the next section. Section 3 is devoted to properties of the optimal 
solutions to the SSFCT problem. In Section 4, heuristic algorithms are presented. Numeric 
example and summaries of finding are provided in Sections 5 and 6, respectively.  
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II. PREFERABLE INTERVALS OF SUPPLIERS 
 

Standard interval notations are used in this paper. 

[ ] { }bxandaxxba ≤≥= |,    and   ( ] { }bxandaxxba ≤>= |,  

In particular, [ ]  and { }aaa =, ( ] { }=aa, . If , then ba > [ ] { }=ba,  and . Here ( ] { }=ba, { } 
stands for the empty set. 
 
DEFINITION 2.1   If two suppliers have the same capacities, fixed management costs, and 
unit variable costs, then they are called identical suppliers. If two suppliers are not identical, 
then they are called distinct suppliers. 
 
 There are three different ways to assign a proper amount of work load to two 
suppliers, for instance, suppliers andi j . People may choose only supplier  only 
supplier

,i
,j or both suppliers. We want to determine when the employment of purely one 

supplier, say supplier , will yield the least cost among the three cases. Motivated by this 
purpose, we define the preferable interval of supplier against supplier 

i
i j as the following. 

 
DEFINITION 2.2   The preferable interval of supplier  against supplier i j  is defined as 

[ ]⎩
⎨
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=
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where  
[ ]{ }xfFxfFbxA jjiii

i
j +<+∈= |,0 , 

( )( )( ]jijjij
i
j bffFbbB −+⋅= sgn, , 

and sgn(x) is the signum function of x.  
 

It is clear that  and [ i
i
j bI ,0⊆ ] [ ]i

i
i bI ,0=  for any Mji ≤≤ ,1 . Next, study the 

property of the preferable interval  of distinct suppliers i andi
jI j . 

 
 Assume that . By the definition of , it is clear that { }≠∈ i

jAx i
jA

xfFxfF jjii +<+       (1) 
Moreover, it can be proved that  

)( ξξ −+++<+ xfFfFxfF iijjii      (2) 
or, equivalently,  

( )ξijj ffF −+<0       (3) 
for x<< ξ0 . In order to show inequality (3), consider the following two cases. If ji ff < , 
since , then inequality (3) is trivially true. If 0≥iF ij ff ≤ , then inequality (1) and x<ξ  
imply 

( ) ( )ξijjijji ffFxffFF −+≤−+<<0  
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which is exactly (3). Hence inequality (3) is always true when x<< ξ0 , so is (2). 
Inequality (1) indicates that supplier  yields less cost than supplieri j . Inequality (2) implies 
that using supplier i  leads less cost than using both suppliers. One may thus conclude that, 
when , an employment of solely supplier  will yield the least cost among all possible 
assignments indicated above. 

i
jAx∈ i

 
 Secondly, suppose that { }≠∈ i

jBx . This implies that ij bb <  and  
( ) jijj bffF −+<0       (4) 

Since , the shipment cannot be made by supplier xb j < j  itself. So we need only to compare 
the cost by purely supplier i  and the cost by both suppliers i and j ; i.e. we need to ensure 
inequality (2) for jb≤< ξ0 . By similar arguments as the proof of inequality (3) above, one 

can conclude that condition (4) will make (2) valid. Therefore, when , using only 
supplier will again cost the least among the other possible assignments to both suppliers 

and 

i
jBx∈

i
i j .  
 

On the other hand, when ibx ≤ , in order to guarantee that the employment of solely 
supplier i  yields the least cost, we need to check the following two cases. Case 1: If jbx ≤  
then inequality (1) must hold; and (2) must hold for x<< ξ0 . Notice that (1) implies (2) in 
this situation, which leads to the fact that  and hence . Case 2: If  then 
only inequality (2) need to be valid for 

i
jAx∈ i

jIx∈ jbx >

jb≤< ξ0 . If ji ff < , then inequality (2) is clearly 
true for any jb≤< ξ0 ; in particular, it holds when jb=ξ , which is actually inequality (4). 
If , then inequality (2) holds for any ij ff ≤ jb≤< ξ0  if and only if inequality (4) is 

satisfied. Both situations give  and thus . Therefore, one may conclude from 

the two cases that x must belong to  to ensure the least cost by using only supplier i  
among all assignments to suppliers and

i
jBx∈ i

jIx∈
i
jI

i j . 
 
We have just proved the following proposition.  

 
PROPOSITION 2.3  Consider distinct suppliers andi j . If the demand magnitude ibx ≤ , 
then supplier i  is more preferable than supplier j  or any combination of both suppliers 

andi j in sense of cost if and only if . i
jIx∈

 
 For simplicity of reference and comparison, we set K  to be an M-by-M double array, 
whose ij th entry (i.e. the entry in the i th row and j th column) is the favorable interval of 
supplier i  against supplier j ; i.e.  

( )
MMijKK

×
= ,  where , i

jij IK = Mji ≤≤ ,1  
The double array K  shall be referred to as the preferable interval matrix. Note that, to 
establish the preferable interval matrix, time complexity of O(M 2) is required. 
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III. PROPERTIES OF THE OPTIMAL SOLUTIONS 
 

The SSFCT problem is an NP-hard problem. In this section, we present properties 
related to the optimal solutions. The properties will be used in the development of the 
algorithms in Section 4.  
 

The following two properties are analogies of properties in Herer et al. (1996). 
 
PROPOSITION 3.1  There exists an optimal solution to the SSFCT problem (P) where there 
is at most one supplier such that ii bd <<0 ; i.e. each of the other suppliers is either not 
employed, or is assigned its capacity of units. 

Proof. Assume that 
kk ii bd <<0 for suppliers  with ki nk ,,2,1 K=  and . 

Without loss of generality, one may assume that 
2≥n

niii fff ≤≤≤ L
21

. Units can be passed 
from supplier with higher unit cost (bigger sub-index) to supplier with lower unit cost 
(smaller sub-index) without increasing the objective function. The property thus follows.   ■ 
 
PROPOSITION 3.2  Suppose d is an optimal solution to the SSFCT problem (P) with 

 for some i . Then  for all k  with ii bd <<0 0=kd ki ff < . 
Proof. Show the statement by contradiction. Assume that there is a supplier k with 
 but . One can pass units from supplier k  to supplier , which will decrease 

the total cost. This contradicts the fact that d is an optimal solution.      ■ 
0≠kd ki ff < i

 
REMARK Note that Proposition 3.2 cannot predict the amount assigned to supplier whose 
unit variable cost is less than or equal to .          □ if
 

Suppose  units are awarded to supplier i , id ii bd ≤<0 .  Then the average unit cost 
of supplier i  associated with  units is 

id iiFi df + , which is non-increasing as  is 
increasing. We thus have the following result. 

id

 
PROPERTY 3.3 The average unit cost for a supplier is non-increasing as the amount of 
units awarded to the supplier is increasing. 
 

Clearly, the smallest average unit cost of supplier i  is achieved when ii bd = . 
Denote the cost in this situation by iiii bFfe += , which is the least average unit cost of 
supplier . From now on, unless otherwise stated, we shall restrict our arguments to the 
following assumption. 

i

 
ASSUMPTION 3.4 Assume that the suppliers are ordered according to  such that 

.  
ie

Meee ≤≤≤ L21

 
Notice that the procedure of sorting M numbers requires time complexity of O(M logM). It 
follows that, in general, when Assumption 3.4 is applied, an O(M logM) time is involved in 
the algorithm. 

 5



DEFINITION 3.5 Let  be the capacity of supplier i , ib ,1 Mi ≤≤ and let . For 

, define , which is the capacity of the first i  suppliers.  

00 =b

Mi ≤≤0 ∑ =
=

i

k ki bB
0

 
DEFINITION 3.6 Define  to be the nonnegative integer such that hen 

, and define when 
0n 100 +<≤ nn BDB  w

MBD < Mn =0 MBD = . Moreover, define 
0nBDR −= . 

 
PROPOSITION 3.7 If , then an optimal solution to the SSFCT problem (P) is d0 = 

0nBD =

( )0,,0,,,,
021 LL nbbb . 

Proof.  If , the statement is trivial. Consider the situation of . First 
notice that d0 is indeed a feasible solution to problem (P). Note also that any feasible 
solution to problem (P) can be obtained from d0 by a sequence of transferring units from its 
first  suppliers to the rest suppliers. 

Mn =0 Mn <0

0n
We thus can focus on a general transferring procedure from one supplier i  with 

 to another supplier k  with . Initially, the average unit cost of units of supplier 
 is . After the procedure, the average unit cost for the units remained in supplier i  is not 

decreased, according to Property 3.3. On the other hand, the average unit cost for the units 
transferred into supplier k  is not reduced either, since the least average unit cost of supplier 

 is  and  according to Assumption 3.4.  

0ni ≤ 0nk >
i ie

k ke ik ee ≥
Since each transferring procedure will not reduce the total cost of d0, one may 

conclude that no feasible solution to problem (P) can provide a smaller total cost than d0, 
which is hence optimal.           ■ 
 
DEFINITION 3.8 For ,  define Mi ≤≤1 i

i

k kki Bbea ∑ =
=

1
, which is the least average unit 

cost of the first i  suppliers. 
 
DEFINITION 3.9 For any natural number MBx ≤ , denote by )(xΓ  the minimized total 
cost of the SSFCT problem (P) with demand magnitude x . RN →:Γ  defines a positive 
valued  increasing function. 
 
REMARK It follows from Proposition 3.7 and Definitions 3.8, 3.9 that ( )

000 nnn BaB =Γ .   □ 
 
 The following two properties are trivial from definitions. 
 
PROPERTY 3.10 . Maaa ≤≤≤ L21

Proof. The property is trivial from Assumption 3.4.        ■ 
 

PROPERTY 3.11 Let RFf nn 11 00 ++ +=ε . Then ε
Γ

≤
−

≤+ R
BaD

e nn
n

00
0

)(
1 . 

Proof. Note that the least possible unit costs can be achieved for the D  units are 
. We thus have 11 00

,,, +nn eee K
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Figure 2. Geometric Representation of Proposition 3.11 
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which implies the first inequality. On the other hand, the cost of the feasible solution d0 = 
( )0,0,,,,,

021 LL Rbbb n  is 
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The second inequality thus follows.           ■ 
 
REMARK Proposition 3.11 has geometric meanings. See Figure 2. Note that the vertical 
coordinates of points E , , and G  represent the minimized total costs corresponding to the 
respective demands. Therefore, the three points are on the graph of function . The vertical 
coordinate of point 

F
Γ

I , or the cost corresponding to demand 1
0
+nB , is simply obtained from 

the first  suppliers by assigning full loads to the first  suppliers and 1 unit to the 
( 1)st supplier. The vertical coordinate of point 

10 +n 0n

0 +n H  is determined from the first 10 +n  
suppliers by assigning full loads to the first  suppliers and 0n R  unit to the ( 10 +n )st 
supplier. From definitions, it is easy to check that the slope of line EF  is , the slope of 
line  is 

10+ne
EG ( ) RBaD nn 00

)( −Γ , and the slope of line EH is ε . Proposition 3.11 is hence  
clearly illustrated by Figure 2. It is worth to point out that the slope of line FI  is . 
Moreover, line 

10+nf
EH  intersects line FI  at point H .        □ 

 
PROPOSITION 3.12 Suppose d is an optimal solution to the SSFCT problem (P). Let 

RFf nn 11 00 ++ +=ε . Then ε>ie  implies that 0=id . 
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Proof. Prove the property by contradiction. Assume that an optimal solution d has 
 and 0>

ki
d ε>

ki
e  for . Compare solutions d and d0 = nk ,,2,1 K= ( )0,0,,,,,

021 LL Rbbb n . 
Since ε≤+10ne , one concludes from Assumption 3.4 that 10 +> nik , . That is 
the group of suppliers ,  and the group of the first 

nk ,,2,1 K=

ki nk ,,2,1 K= 10 +n  suppliers are disjoint. 
Thus, d0 can be obtained from d by transferring units from the group of suppliers , 

, to the first  suppliers.  Notice that is the least possible unit cost of 
supplier , it follows that the average cost of the units transported by each supplier  is 
greater than 

ki
nk ,,2,1 K= 10 +n

ki
e

ki ki
ε . But ε≤≤ +10ni ee  for 11 0 +≤≤ ni . Therefore, when units from a supplier 

 are passed to one of the first ki 10 +n  suppliers, the unit cost is reduced. Hence, the total 
cost decreases as a result. This contradicts the assumption that d is an optimal solution. The 
desired result thus follows.            ■ 
 
REMARK Propositions 3.2 and 3.12 provide sufficient conditions of an optimal solution to 
reject suppliers.            □ 
 
PROPOSITION 3.13  Suppose d is an optimal solution to the SSFCT problem (P). Then 

  for all i  with  and i
ji Id ∈ 0≠id j  with 0=jd . 
Proof. If suppliers i and j  are distinct, then this property is straightforward from 

Proposition 2.3 and the fact that d is an optimal solution to problem (P). If  suppliers andi j  
are identical, then Definition 2.2 implies [ ]i

i
j bI ,0= , and hence .     ■ i

ji Id ∈
 
PROPOSITION 3.14  Suppose d is an optimal solution to the SSFCT problem (P) which 
satisfies Proposition 3.1 with ii bd <<0  for some . Then  for alli i

jji Ibd ∉+ j  with jj bd = . 

Proof. If  for some i
jji Ibd ∈+ j  with jj bd = , then iji bbd ≤+ . The total cost can 

be reduced by reassigning all units of supplier j  to supplier i , according to Proposition 2.3. 
But this contradicts the assumption of optimal solution.       ■ 
 
REMARK Proposition 3.13 indicates a necessary condition of an optimal solution to reject a 
supplier. On the other hand, Proposition 3.14 gives a necessary condition of an optimal 
solution for employing a supplier.          □ 
 
 
IV. APPROACHES FOR SELECTING SUPPLIERS 
 

In this section, we present several approaches for selecting suppliers. The schemes 
are developed based on properties studied in Section 3. All algorithms below are under 
Assumption 3.4 and the condition .  DBM ≥

 
ALGORITHM 4.1 (Heuristic) 
Step 1   Set d = 0, x = D, ; 1=j
Step 2   Set { }xbd jj ,min= , jbxx −= ; 
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Step 3  If , then set 0>x 1+= jj  and go to Step 2;  
 Else stop. 
 
Algorithm 4.1 is a simple heuristic of time complexity O(M logM), which provides the 
feasible solution d0 = ( )0,0,,,,,

021 LL Rbbb n  with  and 0n R  as defined in Section 3. In the 
algorithm, x  represents unallocated demand. Note that at most one entry of d0 satisfies 

; i.e. when . Moreover, from Proposition 3.7, it follows that, if ii bd <<0 10 += ni
0nBD = , 

then an optimal solution can be obtained from Algorithm 4.1. 
 
 Algorithm 4.1 can be improved according to Proposition 3.14. A resulting algorithm 
is the following. 
 
ALGORITHM 4.2 (Heuristic) 
Step 1  Set d = d0, where d0 is the solution from Algorithm 4.1; 
Step 2   If , then set 00 >n 100 += ni , 0nj = ; 
  Else stop; 
Step 3  If  and , then set jj bd = 0

0

i
jji Ibd ∈+ 0=jd , jii bdd +=

00
; 

Step 4 Set . If , then go to Step 3; else set 1−= jj 0>j
0i

dx = ; 
Step 5   Choose a supplier  from those suppliers with k kk bd =  such that  is maximum; kf
Step 6  If , then set 

0ik ff > { }kii bxbd += ,min
00

, 
0ikk dbxd −+= ;  

 Else stop; 
Step 7 If , then set 0=kd kbxx += , go to Step 5; 
Step 8 If , then set kk bd ≠ ki =0 , 10 += nj , go to Step 3; 
 Else stop. 
 
Algorithm 4.2 restricts the process in the first 10 +n  suppliers. It first checks the condition 
indicated in Proposition 3.14, then reduces the corresponding total cost by passing units 
from suppliers with higher unit costs to those with lower unit costs. Each mid step of the 
solution vector d has at most one entry with ii bd <<0 . Note that if the unit variable costs 
of the first  suppliers were sorted, then it takes no work time to find the maximum  in 
each visit of Step 5. It takes O( ), or at most O(M logM) time to sort  numbers. 
Note also that there are two layers of loops in the algorithm which require O( ), or at most 
O(M 2) processing time.  Therefore, Algorithm 4.2 is in general a heuristic scheme of 
complexity O(M 2).  

0n kf

00 log nn 0n
2
0n

 
 By Propositions 3.13 and 3.14, a global heuristic algorithm can be obtained. 
 
ALGORITHM 4.3 (Heuristic) 
Step 1   Set d = d0, where d0 is the solution vector from Algorithm 4.2; 
Step 2   Set  the supplier with 0i 00

0 ii bd << ;  
  If there is not such a supplier, set 100 += ni ; 
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Step 3  Set i  the first supplier with ii bd = , j  the first supplier with , and 0=jd 0=m ; 

Step 4 If , then set , go to Step 9; j
ij Id
0

∈ 0ik =

Step 5 If , then set , go to Step 9; j
ij Id ∈ ik =

Step 6 If there is a next supplier i with ii bd = , then set  the new supplier, go to Step 5; i
Step 7 If there is a next supplier j with 0=jd , then set j  the new supplier, go to Step 4; 
Step 8 If , then go to Step 3; 1=m
 Else stop; 
Step 9 Set , , kj dd = 0=kd 1=m ; 

Step 10 Starting from the first supplier s  with ss bd =  and in order: if , then 
set  and 

j
ssj Idd ∈+

sjj ddd += 0=sd ; 
Step 11 Do this step till supplier j  is fully loaded: choose a supplier t  from those 

suppliers with  such that  is maximum, then pass units from supplier t  
to supplier 

tt bd = tf
j ;  

 Go to Step 2. 
 
Algorithm 4.3 applies Proposition 3.13 in Steps 4 through 7, and applies Proposition 3.14 in 
Steps 9 through 11. Since preferable intervals are frequently used in the scheme, it is 
convenient to generate the double array K  indicated in Section 2 in the preprocessing. Note 
that there are three layers of loops in the algorithm which require O(M 3) processing time. 
 
 
V. COMPUTATIONAL EXAMPLE 
 

Consider an example with 10 suppliers and a sink demand 17=D . The supplier data 
are shown in Table 1.  

 
 iF  ib  if  ie  
1 41 4 13 23.25 
2 59 3 8 27.67 
3 65 3 13 34.67 
4 68 3 14 36.67 
5 53 2 11 37.50 
6 92 3 8 38.67 
7 67 2 9 42.50 
8 67 2 11 44.50 
9 69 2 13 47.50 
10 84 2 7 49.00 

 
The initial solution of Algorithm 4.3, i.e. solution from Algorithm 4.2 is ( )  
with . Since , assignments to supplier 4 are transported to the next 
output in Algorithm 4.3 is ( . This time the first supplier with no work 

0,0,0,0,3,2,2,3,3,4
40 =i ]2,0[2 7

4 =∈ I
)0,0,0,2,3,2,0,3,3,4
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load is supplier 4 . Since , we need to pass 3 units from supplier 6 to supplier 4, 
according to Algorithm 4.3. The corresponding result is 

]3,0[3 4
6 =∈ I

( )0,0,0,2,0,2,3,3,3,4 . This turns out 
to be the optimal solution. 
 
 
VI. CONCLUSIONS 
 

Thanks to the support of the Texas Center Research Fellows Grant Program 2005-
2006, we have started research in the single-sink fixed-charge transportation problem. In this 
note, a new concept of preferable intervals has been introduced and studied. Properties of 
optimal solutions to the problem are investigated. Heuristic algorithms using preferable 
intervals are presented. Our future research is targeted at branch-and-bound enumerating 
algorithms using preferable intervals. 
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